
Worked examples for Lab #2: CO2 data

Jonathan Gilligan

2022-01-31

Contents

Instructions 1

Worked Example 1

Downloading CO2 Data from Mauna Loa Observatory . 1

Exercises 8

Pivoting Data Frames . 8

Instructions

This document has worked examples: The first example show how to download measurements of carbon dioxide from
the laboratory on Mauna Loa, Hawaii, that was started by C. David Keeling in 1958, analyze the data, and make plots
and tables to show the results of your analysis.

After studying the worked example, you will do further analysis and plotting using both the CO2 data from Mauna Loa
and also global temperature measurements that you will download from NASA’s Goddard Institute for Space Studies.

The second example shows how to use pivot_longer and pivot_wider functions to manipulate a data.frame or
tibble, and how to use grouping and summarizing functions.

Worked Example

Downloading CO2 Data from Mauna Loa Observatory

In 1957, Charles David Keeling established a permanent observatory on Mauna Loa, Hawaii to make continuous
measurements of atmospheric carbon dioxide. The observatory has been running ever since, and has the longest
record of direct measurements of atmospheric carbon dioxide levels. The location was chosen because the winds blow
over thousands of miles of open ocean before reaching Mauna Loa, and this means the CO2 measurements are very
pure and uncontaminated by any local sources of pollution.

We can download the data from https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/
monthly_in_situ_co2_mlo.csv. We can download the file and save it to the local computer using the R function
download.file

Here, I use the file.exists function so I only download the file if it doesn’t already exist. That avoids having to
download it again if you already have it.

1

https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv
https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/monthly/monthly_in_situ_co2_mlo.csv

if (!file.exists('_data/mlo_data.csv')) {
download.file(mlo_url, '_data/mlo_data.csv')

}

Try opening the data file in Excel or a text editor.

The first 54 lines of the data file are comments describing the data. These comments describe the contents of each
column of data and explain that this data file uses the special value -99.99 to indicate a missing value. The Mauna
Loa Observatory started recording data in March 1958, so the monthly averages for January and February are missing.
Other months are missing for some months in the record when the instruments that monitor CO2 concentrations were
not working properly.

The read_csv function from the tidyverse package can read the data into R and convert it into a data structure
that we call a tibble or a data.frame (it’s kind table of data, similar to the way data is organized in an Excel
spreadsheet).

When R reads in .csv files, it expects column names to be on a single row, and lines 55–57 of the data file are column
headings that are split across multiple rows, so R will get confused if we tell it to use those rows as column names.

To avoid problems, we will tell read_csv to read this data file, but skip the first 57 lines. We will also tell it not to
look for column names in the data file, so we will supply the column names, and we will tell it that whenever it sees
-99.99, it should interpret that as indicating a missing value, rather than a measurement.

Finally, R can guess what kinds of data each column contains, but for this file, things work a bit more smoothly if we
provide this information explicitly.

read_csv lets us specify the data type for each column by providing a string with one letter for each column. The
letters are i for integer numbers, d for real numbers (i.e., numbers with a decimal point and fractional parts), n for an
unspecified number, c for character (text) data, l for logical (TRUE or FALSE), D for calendar dates, t for time of day,
and T for combined date and time.

mlo_data = read_csv('_data/mlo_data.csv',
skip = 57, # skip the first 57 rows
col_names = c('year', 'month', 'date_excel', 'date',

'co2_raw', 'co2_raw_seas',
'co2_fit', 'co2_fit_seas',
'co2_filled', 'co2_filled_seas'),

col_types = 'iiiddddddd',
ˆˆˆ the first three columns are integers and the next
7 are real numbers
na = '-99.99'
ˆˆˆ interpret -99.99 as a missing value

)

Let’s look at the first few rows of the data:

Here is how it looks in R:

head(mlo_data)

A tibble: 6 x 10
year month date_excel date co2_raw co2_raw_seas co2_fit co2_fit_seas co2_filled co2_filled_seas
<int> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1958 1 21200 1958. NA NA NA NA NA NA
2 1958 2 21231 1958. NA NA NA NA NA NA
3 1958 3 21259 1958. 316. 314. 316. 315. 316. 314.
4 1958 4 21290 1958. 317. 315. 317. 315. 317. 315.
5 1958 5 21320 1958. 318. 315. 318. 315. 318. 315.
6 1958 6 21351 1958. NA NA 317. 315. 317. 315.

2

There are six different columns for the CO2 measurements:

• co2_raw is the raw measurement from the instrument. The measurements began in March 1958, so there are
NA values for January and February. In addition, there are missing values for some months when the instrument
was not working well.

• co2_fit is a smoothed version of the data, which we will not use in this lab.

• co2_filled is the same as co2_raw, except that where there are missing values in the middle of the data, they
have been filled in with interpolated estimates based on measurements before and after the gap.

For each of these three data series, there is also a seasonally adjusted version, which attempts to remove the effects of
seasonal variation in order to make it easier to observe the trends.

For this lab, we will focus on the co2_filled data series. To keep things simple, we can use the select function
from tidyverse to keep only certain columns in the tibble and get rid of the ones we don’t want.

mlo_simple = mlo_data %>% select(year, month, date, co2 = co2_filled)

head(mlo_simple)

A tibble: 6 x 4
year month date co2
<int> <int> <dbl> <dbl>
1 1958 1 1958. NA
2 1958 2 1958. NA
3 1958 3 1958. 316.
4 1958 4 1958. 317.
5 1958 5 1958. 318.
6 1958 6 1958. 317.

Note how we renamed the co2_filled column to just plain co2 in the select function. There are some missing
measurements from months where the laboratory instruments were not working properly. These are indicated by NA,
meaning “not available.”

We can also use the kable() function from the knitr package to format the data nicely as a table in an RMarkdown
document. Notice how I can use RMarkdown formatting in the column names and caption to make the “2” in CO2
appear as a subscript.

head(mlo_simple) %>%
kable(col.names = c(year = "Year", month = "Month", date = "Date",

co2 = "CO~2~ (ppm)"),
caption = "A table of monthly CO~2~ measurements from Mauna Loa.")

Now, let’s plot this data:

ggplot(mlo_simple, aes(x = date, y = co2)) +
ˆˆˆ The ggplot command specifies which data to plot and the aesthetics that
define which variables to use for the x and y axes.
geom_line() +
ˆˆˆ The geom_line() command says to plot lines connnecting the data points
labs(x = "Year", y = "CO2 concentration (ppm)",

title = "Measured CO2 from Mauna Loa Observatory")
ˆˆˆ The labs() command tells ggplot what names to use in labeling the axes
and the title for the plot.

3

Table 1: A table of monthly CO 2 measurements from Mauna Loa.

Year Month Date CO~2~ (ppm)
1958 1 1958.041 NA
1958 2 1958.126 NA
1958 3 1958.203 315.70
1958 4 1958.288 317.45
1958 5 1958.370 317.51
1958 6 1958.455 317.25

Earlier in this .Rmd file, I called set_theme(theme_bw(base_size = 15))
to set the default plot style. If you call ggplot() without this,
you will get a different style, but you can either call theme_set
or you can add a theme specification (such as
"+ theme_bw(base_size = 15)")
to the end of the sequence of plotting commands in order to
apply a specific style to an individual plot.

325

350

375

400

1960 1980 2000 2020
Year

C
O

2
co

nc
en

tr
at

io
n

(p
pm

)

Measured CO2 from Mauna Loa Observatory

Figure 1: Monthly CO2 measurements from Mauna Loa.

I created a caption for the figure caption by adding the following specification to the header of the R code chunk in the
RMarkdown document:

fig.cap="Monthly CO~2~ measurements from Mauna Loa."

Notice the seasonal variation in CO2. Every year, there is a large cycle of CO2, but underneath is a gradual and

4

steady increase from year to year. If we wanted to look at the trend without the seasonal variation, we could use the
co2_filled_seas column of the original tibble, but instead, let’s look at how we might estimate this ourselves.

The seasonal cycle is 12 months long and it repeats every year. This means that if we average the values in our table
over a whole year, this cycle should average out. We can do this by creating a new column annual where every row
represents the average over a year centered at that row (technically, all the months from 5 months before through six
months after that date).

To do this, we use the function slide_vec from the slider package, as shown below. The slide_vec function
allows you to take a series of data (such as monthly CO2 measurements) and at each point, apply a function to the data
within a “window” that includes a certain number of points before and after the point in question.

Here, we apply the mean function to take the average, and we define the “window” to be the 12 points roughly centered
on the point in question, so for each month in our data series, slide_vec takes the average of the 12 measurements
roughly centered on that month (technically, the month, the five months before, and the six months after). You could
also specify .before = 0, .after = 11 to take the 12 months starting with the given month, or .before = 11,
.after = 0 to take the 12 months ending with the given month.

There will be months at the beginning of the series that don’t have five months of data before them and points at the
end of the series that don’t have six months after them. By default slide_vec sets those points to NA, which is a
special value R uses to indicate missing values (NA means “not available”).

mlo_simple %>%
mutate(annual = slide_vec(co2, mean, .before = 5, .after = 6)) %>%
ggplot(aes(x = date)) +
geom_line(aes(y = co2), color = "darkblue", size = 0.1) +
geom_line(aes(y = annual), color = "black", size = 0.5) +
labs(x = "Year", y = "CO2 concentration (ppm)",

title = "Measured and Seasonally Adjusted CO2")

But wait: we might want a legend to tell the reader what each colored line represents. We can create new aesthetics
for the graph mapping to do this:

mlo_simple %>%
mutate(annual = slide_vec(co2, mean, .before = 5, .after = 6)) %>%
ggplot(aes(x = date)) +
geom_line(aes(y = co2, color = "Raw"), size = 0.1) +
geom_line(aes(y = annual, color = "12-month average"), size = 0.5) +
scale_color_manual(values = c("Raw" = "darkblue",

"12-month average" = "black"),
name = "Smoothing") +

labs(x = "Year", y = "CO2 concentration (ppm)",
title = "Measured and Seasonally Adjusted CO2")

We can also anlyze this data to estimate the average trend in CO2. We use the lm function in R to fit a straight line to
the data, and we use the tidy function from the broom package to print the results of the fit nicely.

R has many powerful functions to analyze data, but here we will just use a very simple one. We specify the linear
relationship to fit using R’s formula language. If we want to tell R that we think co2 is related to date by the linear
relationship co2 = a+b×date, then we write the formula co2 ~ date. The intercept is implicit, so we don’t have to
spell it out.

co2_fit = lm(co2 ~ date, data = mlo_simple)

library(broom)

tidy(co2_fit)

5

325

350

375

400

1960 1980 2000 2020
Year

C
O

2
co

nc
en

tr
at

io
n

(p
pm

)

Measured and Seasonally Adjusted CO2

Figure 2: Raw and seasonally adjusted measurements of atmospheric CO2, from Mauna Loa.

6

325

350

375

400

1960 1980 2000 2020
Year

C
O

2
co

nc
en

tr
at

io
n

(p
pm

)

Smoothing

Raw
12−month average

Measured and Seasonally Adjusted CO2

Figure 3: Raw and seasonally adjusted measurements of atmospheric CO2, from Mauna Loa, with a legend identifying
the different lines.

7

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -2819. 18.1 -156. 0
2 date 1.60 0.00907 176. 0

This shows us that the trend is for CO2 to rise by 1.6 ppm per year, with an uncertainty of plus or minus 0.009.

If we want to assign the value of the trend to a variable, we do it like this:

co2_trend = coef(co2_fit)['date']

print(co2_trend)

date
1.595783

We can also plot a linear trend together with the data:

mlo_simple %>%
ggplot(aes(x = date, y = co2)) +
geom_line() +
geom_smooth(method = 'lm') +
labs(x = "Year", y = "CO2 concentration (ppm)",

title = "Measured CO2 and Linear Fit")

`geom_smooth()` using formula 'y ~ x'

Exercises

In the file lab-02-report.Rmd, complete the exercises, filling in the code and explanatory text and answering the
questions in the exercises.

You can copy code from these worked examples and edit it to apply it to the exercises in the lab report file.

Pivoting Data Frames

If you have data in a tibble or data.frame, you can re-organize it to make it easier to analyze. We use the functions
pivot_longer and pivot_wider for this.

U.S. Presidential approval ratings 1945–1974

Here is an example of using pivot_longer, using a data set of quarterly approval ratings for U.S. presidents from
1945–2021:

df = read_rds(file.path(data_dir, "presidential_approval.Rds"))

print("First 10 rows of df are")

[1] "First 10 rows of df are"

8

300

325

350

375

400

1960 1980 2000 2020
Year

C
O

2
co

nc
en

tr
at

io
n

(p
pm

)

Measured CO2 and Linear Fit

Figure 4: Trend in atmospheric CO2.

9

print(head(df, 10))

A tibble: 10 x 6
president year Q1 Q2 Q3 Q4
<chr> <int> <dbl> <dbl> <dbl> <dbl>
1 Harry S. Truman 1945 NA 84 NA 67
2 Harry S. Truman 1946 23.3 0.5 -19 -15.5
3 Harry S. Truman 1947 29.3 32.3 29.5 21
4 Harry S. Truman 1948 21 -8.67 NA NA
5 Harry S. Truman 1949 42.5 24.5 14 NA
6 Harry S. Truman 1950 -1 -3.5 -0.25 -8
7 Harry S. Truman 1951 -27 -34.3 -24.3 -32
8 Harry S. Truman 1952 -41 -29.5 -30 -23.8
9 Dwight D. Eisenhower 1953 62 63.5 53.8 40.5
10 Dwight D. Eisenhower 1954 48.8 40 46.2 38.3

For each year, the table has a column for the president, a column for the year, and four columns (Q1 . . . Q4) that
hold the quarterly net-approval ratings for the president in that quarter. Now we want to organize these data into four
columns: one column for the president, one column for the year, one column to indicate the quarter, and one column
to indicate the net approval rating.

We do this with the pivot_longer function. the pivot_longer command organizes the data into tidy columns:

• names_to = "quarter" tells pivot_longer to create a column called “quarter” and store the names of the
original columns there.

• values_to = "approval" tells pivot_longer to create a column called “approval” and store the values from
the columns there.

• cols = -c(president, year) tells pivot_longer NOT to change the columns “president” and “year”.

So the approval ratings from the second quarter of 1960 will be stored in a row where the column president contains
“Dwight D. Eisenhower”, year contains 1960, quarter contains “Q2”, and net_approval contains the net approval
rating.

I also use the arrange() command to sorts the rows of the resulting data frame to put the years in ascending order,
from 1945 to 2021, and within each year, sort the quarters in alphabetical order from Q1 to Q4

df_long = df %>%
pivot_longer(cols = -c(president, year),

names_to = "quarter", values_to = "net_approval") %>%
arrange(year, quarter)

head(df_long) # print the first few rows of the tibble.

A tibble: 6 x 4
president year quarter net_approval
<chr> <int> <chr> <dbl>
1 Harry S. Truman 1945 Q1 NA
2 Harry S. Truman 1945 Q2 84
3 Harry S. Truman 1945 Q3 NA
4 Harry S. Truman 1945 Q4 67
5 Harry S. Truman 1946 Q1 23.3
6 Harry S. Truman 1946 Q2 0.5

10

We can use the pivot_wider function to do the opposite and pivot our new data frame back to the original format:

df_wide = df_long %>%
pivot_wider(names_from = "quarter", values_from = "net_approval") %>%
arrange(year)

head(df_wide) # print the first few rows of the tibble.

A tibble: 6 x 6
president year Q1 Q2 Q3 Q4
<chr> <int> <dbl> <dbl> <dbl> <dbl>
1 Harry S. Truman 1945 NA 84 NA 67
2 Harry S. Truman 1946 23.3 0.5 -19 -15.5
3 Harry S. Truman 1947 29.3 32.3 29.5 21
4 Harry S. Truman 1948 21 -8.67 NA NA
5 Harry S. Truman 1949 42.5 24.5 14 NA
6 Harry S. Truman 1950 -1 -3.5 -0.25 -8

Grouping and Summarizing

Now suppose we want to find the average approval for each year? We can use the functions group_by and summarize
with df_long. group_by(df, year) or df %>% group_by(year) group the rows of the data frame into groups
that have the same year (so there is a group for each year, each of which contains the rows for the four quarters of that
year), and then summarize(net_approval = mean(net_approval)) replaces those four rows in each group with
the average over all four quarters.

After you call summarize you usually want to ungroup your data, because it’s generally easier to work with ungrouped
data unless you have a reason to group it. You do this with ungroup(df) or df %>% ungroup().

df_annual = df_long %>% group_by(year) %>%
summarize(net_approval = mean(net_approval, na.rm = TRUE)) %>%
ungroup()

head(df_annual)

A tibble: 6 x 2
year net_approval
<int> <dbl>
1 1945 75.5
2 1946 -2.67
3 1947 28.0
4 1948 6.17
5 1949 27
6 1950 -3.19

The na.rm = TRUE argument to mean in the code above tells R to ignore rows where net_approval has a missing
(NA, or “not available”) value. Normally, if there is a missing value in a function like mean or max or min, or sum,
the result is NA because you’re trying to take the average (or maximum, minumum, sum, etc.) of a bunch of numbers
where some are missing, so you don’t know what the average is. Functions like these often have an option to call them
with na.rm = TRUE, that calculates the mean, minimum, maximum, sum, or whatever for the values that are known,
and ignore any missing values.

You can also group by multiple variables at once, so if you had weather data for every day over ten years, you could
group by year and month to calculate the monthly average conditions:

11

suppose the variable df_daily has daily temperatures for many years,
with columns year, month, day, and temperature
#
df_monthly = df_daily %>% group_by(year, month) %>%

summarize(temperature = mean(temperature, na.rm = TRUE)) %>%
ungroup()

12

	Instructions
	Worked Example
	Downloading CO2 Data from Mauna Loa Observatory

	Exercises
	Pivoting Data Frames

