
New Tools for Data Analysis

Jonathan Gilligan

2022-04-11

Contents

Some New Tools for Working with Data 1

Getting fancy with the pipe operator (%>%) . 1

Extracting columns from a data frame in a pipeline . 3

Tidying up results of statistical modeling . 3

Writing functions 5

kayadata: an R package for analyzing Kaya-identity data 6

Some New Tools for Working with Data

There are two new tools we will use in working with data for this lab:

Getting fancy with the pipe operator (%>%)

With the tidyverse, we often use the “pipe” operator %>% to send the output from one function into the input of another
function. In most cases, this works very simply and it uses the output from the function on the left as the first argument
of the function on the right.

For instance, the filter function selects certain rows in a data frame or tibble. I will work here with examples
from the built-in storms data frame that lists a subset of hurricanes from the National Oceanic and Atmospheric
Administration’s Atlantic hurricane database. The data includes the positions and attributes of 198 tropical storms,
measured every six hours during the lifetime of the storm.

Let’s select Hurricane Katrina from 2005 (I specify the year because there were two earlier Katrinas in 1981 and 1999;
storm names are re-used periodically unless they are retired because a storm with that name becomes historically
important).

data(storms)
katrina = filter(storms, name == "Katrina", year == 2005)

and we can also do the same thing using the pipe operator like this:

1

storms %>% filter(name == "Katrina", year == 2005)

What the pipe operator %>% does behind the scenes is take that output of whatever is on the left (the data frame storms)
and stick it in front of the arguemnts for the function on the right so the two examples given above are equivalent.

We have been usuing the pipe operator throughout the semester to combine functions. Suppose we want to mutate
the storms data frame to add a new column ts_area that is equal to pi * (ts_diameter / 2)ˆ2, where
ts_diameter is a column in storms that corresponds to the diameter (in nautical miles) of the area in which winds
are tropical storm strength or greater (36 knots), and then we want to select only the data where the tropical storm area
is greater than 10,000 square nautical miles, and finally sort the data so the rows of the data frame go from largest to
smallest tropical storm area. We can do that as follows:

First way
df1 = arrange(filter(mutate(storms, ts_area = pi * (ts_diameter / 2.0)ˆ2),

ts_area > 10000), desc(ts_area))

Second way, using a temporary variable
df2 = mutate(storms, ts_area = pi * (ts_diameter / 2.0)ˆ2)
df2 = filter(df2, ts_area > 10000)
df2 = arrange(df2, desc(ts_area))

Third way, using the pipe operator
df3 = storms %>% mutate(storms, ts_area = pi * (ts_diameter / 2.0)ˆ2) %>%

filter(ts_area > 10000) %>% arrange(desc(ts_area))

We use pipes because often they are simpler to understand. If we use the first way in the example above, if we are
combining many functions, nesting functions inside other functions becomes very difficult to read and understand.
The second way, of using temporary variables is fine, but it can get confusing to have lots of variable names that we
use only one time to pass data from one function to another. The third way, using the pipe operator makes it easier to
understand how the data is moving through the processing pipeline.

But the way pipe operators work can sometimes get in the way of things we want to do.

First, suppose that I want to send the results of a function into the second or third argument of a subsequent function
instead of the first argument? We use the lm function to calculate the slope and intercept of a trend line that best fits
some data. The lm function expects the formula for the line to fit to be the first argument and the data to be the second.

Suppose I want to examine hurricanes from the year 2005 and look for a relationship between the air pressure in the
eye and the wind speed, but only during the time when they are classified as hurricanes.

I can do this as follows:

hurricanes_2005 = storms %>% filter(status == "hurricane", year == 2005)
lin_fit = lm(wind ~ pressure, data = hurricanes_2005)

The lm function looks at the data given by the data argument and then finds the best line that characterizes the linear
relationship wind ~ pressure, which means that the wind is a linear function of the pressure (this would be the
slope of a graph where wind is on the y-axis and pressure is on the x-axis).

Suppose that I would like to pipe data from the filter function to the lm function. I have a problem because the pipe
operator would put the output from filter as the first argument of the lm function, but in lm the first argument is the
formula and data is the second. I can do this as follows:

lin_fit2 = storms %>% filter(status == "hurricane", year == 2005) %>%
lm(wind ~ pressure, data = .)

2

The pipe operator creates a new variable . (the period), which gets the value of whatever is on the left of the operator.
If I don’t use the . in the function on the right, the pipe operator invisibly puts . in the first argument so foo(x) %>%
bar(y, z) is re-written behind the scenes to become

. = foo(x)
bar(., y, z)

However, if I want to use the . somewhere else, I can do that explicitly and when the pipe operator looks at the
function on its right, it knows not to stick the . in the first argument if I use . in the function call. This, I could write
foo(y) %>% bar(x, ., z) if I want to substitute the output of foo(y) for the second argument of bar.

Extracting columns from a data frame in a pipeline

If I just want to look at the names of the hurricanes from the storms data frame, I can use the $ operator:

names = storms$name

But suppose that I want to filter the storms and then extract the names. What are the names of category 5 hurricanes?

cat_5 = storms %>% filter(category == 5)
names = cat_5$name

Suppose I want to do this without creating a variable cat_5? I could try

This will give an error
names = storms %>% filter(category == 5)$name

but it turns out that this doesn’t work because of the way the pipe operators work. To do this, I can use the pull
function from the tidyverse:

This will work
names = storms %>% filter(category == 5) %>% pull(name)

This will be useful for what comes next.

Tidying up results of statistical modeling

lm is one example of a lot of powerful functions in R that let you analyze data by fitting models. A statistical model
is an idealized functional relationship between different attributes of the data (attributes are represented by columns in
a data frame). For instance, a linear model idealizes two columns in the data frame in terms of a linear relationship.
For instance y~x represents a model in which y = a+ bx. In fact, the data rarely lie exactly along a line, but the lm
function will find the values for a and b that define the line that best relates y to x (specifically this will be the line such
that the minimizes the sum of the square of the errors between the actual y and the line: ∑i(yi − (a+bxi))

2.

We will be using lm in this lab to find the rates of change of different parameters in the Kaya identity. For that we want
to examine the slopes of the lines identified by lm. We can do that as follows for the slope that relates wind speed to
pressure for a hurricane.

First, let’s plot the two variables to see wether there’s an apparent relationship. Let’s look at hurricanes from 2005:

3

storms %>% filter(status == "hurricane", year == 2005) %>%
ggplot(aes(x = pressure, y = wind)) + geom_point(na.rm = T)

80

100

120

140

160

900 925 950 975 1000
pressure

w
in

d

The data clearly doesn’t lie on a straight line, but there is a clear relationship that lower pressures tend to go along with
higher wind speeds and higher pressures with lower wind speeds.

First, let’s review how we can fit a relationship between wind speed and pressure for hurricanes from 2005:

lin_fit = storms %>% filter(status == "hurricane", year == 2005) %>%
lm(wind ~ pressure, data = .)

But how can we get the slope out of the variable lin_fit? Here we use the broom package, which gives us a tidy
function that will tidy up the results of statistical models and put them into a nice data frame:

lin_fit = storms %>% filter(status == "hurricane", year == 2005) %>%
lm(wind ~ pressure, data = .)

tidy(lin_fit)

A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 947. 25.3 37.4 5.07e-86
2 pressure -0.890 0.0263 -33.8 3.43e-79

Here, term tells us the parameter: (Intercept) is the intercept (a in the formula above), and pressure is the slope
with respect to the pressure (b in the formula above). estimate is the estimate of the parameter (intercept or slope),

4

std.error is the uncertainty about the estimate of the parameter, statistic and p.value are used for statistical
hypothesis testing and we will not use them so you can ignore them.

If I just want the slope, I can get that as follows:

lin_fit = storms %>% filter(status == "hurricane", year == 2005) %>%
lm(wind ~ pressure, data = .)

slope = tidy(lin_fit) %>% filter(term == "pressure") %>% pull(estimate)
slope

[1] -0.8896546

Here, filter selects the row where term equals “pressure” and pull(estimate) then selects the estimate column.

We can write this more compactly as follows:

slope = storms %>%
filter(status == "hurricane", year == 2005) %>%
lm(wind ~ pressure, data = .) %>%
tidy() %>%
filter(term == "pressure") %>% pull(estimate)

slope

[1] -0.8896546

Writing functions

If you are going to do the same calculation many times in R it is often useful to define a function that performs that
calculation and then you can simply call the function whenever you want to do the calculation with new values.

For instance, in the “Growth Rates and Trends” section of the assignment for the bottom-up decarbonization lab, we
see that if we have a quantity q that is growing at a steady percentage rate rq each year and we know the value in one
year y0 and want to predict what the value will be at a future year y, we can calculate this as follows:

q(y) = q(y0)× exp(rq × (y− y0)).

We can write this as an R function that we can call for different quantities and years:

growth = function(q_0, rate, start_year, end_year) {
q_0 * exp(rate * (end_year - start_year))

}

A function definition has three parts: First we have the name of the function (growth), then we have the word
function, followed by the arguments that the user must supply to the function (q_0, rate, start_year,
end_year), and then the body of the function, between curly braces { ... }. When you call the function, it
executes all of the code between the curly braces and returns the last value calculated before the closing brace. Thus,
we can call the function like this to estimate the world population in 2050

P_2017 = 7.53 # world population was 7.53 billion
r_P = 0.0141 # growth rate is 1.41% per yer
P_2050 = growth(q_0 = P_2017, rate = r_P, start_year = 2017, end_year = 2050)
P_2050

[1] 11.99146

5

If you don’t specify the name of the parameter, the function fills them out in order, so we could also write

P_2017 = 7.53 # world population was 7.53 billion
r_P = 0.0141 # growth rate is 1.41% per yer
P_2050 = growth(P_2017, r_P, 2017, 2050)
P_2050

[1] 11.99146

kayadata: an R package for analyzing Kaya-identity data

You can install the kayadata package as follows:

library(devtools)
install_github("jonathan-g/kayadata")

or

library(pacman)
p_load_current_gh("jonathan-g/kayadata")

Once you have installed the kayadata package, you load it as follows:

library(kayadata)

This package has several useful functions:

• get_kaya_data(region_name): Get Kaya-identity data for a country or region.

– Argument: region_name is the name of the country or region you want data for (e.g., “United States”,
“World”, “China”, etc.).
You can inspect a list of countries and regions by running kaya_region_list().

* Results: The function returns a data frame with the following columns:
· region: The country or region.
· year: The year.
· P: The population (in billions).
· G: The gross domestic product (in trillions).
· E: The primary energy consumption (in quads).
· F: The energy-related CO2 emissions (in millions of metric tons of CO2).
· g: Per-capita GDP (in thousands of dollars per person).
· e: The energy intensity of the economy (in quads per trillion dollars of GDP).
· f: The emissions intensity of the energy supply (in millions of metric tons of CO2 per quad).
· ef: The emissions intensity of the economy (in millions of metric tons of CO2 per trillion dollars

of GDP).

• get_top_down_values(region_name): Get projections of the future values of Kaya-identity variables for a
country, from the top-down International Energy Outlook analysis by the U.S. Energy Information Administra-
tion.

– Argument: region_name is the name of the country or region you want data for (e.g., “United States”,
“World”, “China”, etc.).

– Results: The function returns a data frame with the following columns:

6

* region: The country or region.
* year: The year (five-year intervals from 2015–2050).
* P: The population (in billions).
* G: The gross domestic product (in trillions).
* E: The primary energy consumption (in quads).
* F: The energy-related CO2 emissions (in millions of metric tons of CO2).
* g: Per-capita GDP (in thousands of dollars per person).
* e: The energy intensity of the economy (in quads per trillion dollars of GDP).
* f: The emissions intensity of the energy supply (in millions of metric tons of CO2 per quad).
* ef: The emissions intensity of the economy (in millions of metric tons of CO2 per trillion dollars of

GDP).

• get_top_down_trends(region_name): Get the trends for Kaya-identity variables for a country, from the
top-down International Energy OUtlook analysis by the U.S. Energy Information Administration.

– Argument: region_name is the name of the country or region you want data for (e.g., “United States”,
“World”, “China”, etc.).

– Results: The function returns a data frame with the following columns:

* region: The country or region
* P: The rate of change of the population (multiply by 100 to get the rate in percent per year).
* G: The rate of change of GDP.
* E: The rate of change of primary energy consumption.
* F: The rate of change of CO2 emissions.
* g: The rate of change of per-capita GDP.
* e: The rate of change of the energy intensity of the economy.
* f: The rate of change of the emissions intensity of the energy supply.
* ef: The rate of change of the emissions intensity of the economy.

• project_top_down(region_name, year): Calculate projected values for Kaya identity variables at a future
year from the present through 2050.

– Arguments:

* region_name is the name of the country or region you want data for.
* year: The year you want projected data for (through 2050).
* Results: A data frame with one row and columns for region, year, and the Kaya variables: P, G, E,

F, g, e, f, and ef.

• get_fuel_mix(region_name): Get the mixture of primary energy sources used by a country or region.

– Argument: region_name is the name of the country or region you want data for (e.g., “United States”,
“World”, “China”, etc.).

– Results: The function returns a data frame with the following columns:

* region: The country or region
* region_code: A three-letter code for the country or region.
* geography: The kind of region (“nation”, “region”, or “world”).
* year: The year the data represents.
* fuel: The kind of energy source (“Oil”, “Natural Gas”, “Coal”, “Nuclear”, “Hydro”, or “Renew-

ables”)
* quads: The number of quads of that kind of energy consumed in that year.
* pct: The percent of total primary energy consumption that came from that kind of energy source.

• plot_kaya(kaya_data, variable, start_year, stop_year, y_lab, log_scale, trend_line,
points, font_size): Plot a time series showing trends in a Kaya variable.

– Arguments:

* kaya_data: A data frame, like those returned by get_kaya_data.

* variable: A quoted Kaya variable name (“P”, “G”, “E”, “F”, “g”, “e”, “f”, or “ef”).

7

* start_year (optional): If you want to do trend analysis, you can specify the year to start calculating
the trend. The graph will color the years from start_year to stop_year in a darker color.
If you don’t specify start_year, the default value is 1980. You can eliminate the special coloring
and trend analysis by setting start_year = NULL.

* stop_year (optional): The year to stop the trend analysis. If you don’t specify stop_year, it defaults
to the last year in the data frame.

* y_lab (optional): The label for the y-axis. If you don’t specify this, R will pick an appropriate label
based on which variable you choose.

* log_scale (optional): Set this to TRUE or FALSE to specify whether to plot the y-axis on a logarithmic
scale. The default is to set log_scale = FALSE if you don’t specify a value.

* trend_line (optional): Set this to TRUE or FALSE to specify whether to plot a trend line. The default
is to set trend_line = FALSE if you don’t specify a value.

* points (optional): Set this to TRUE or FALSE to specify whether to plot points on the line. If you are
making a small graph, the points may make the graph too busy. The default is to set points = TRUE
if you don’t specify a value.

* font_size (optional): This lets you adjust the size of the fonts used in labeling the axes on the graph.
If you are making small plots and the y-axis label won’t fit on the side of the graph, you might want
to use a smaller font size. The default is to set font_size = 20 if you don’t specify a value.

– Result: This function returns a plot object.

– Example:

kd = get_kaya_data("World")
plot_kaya(kd, "F")

15000

20000

25000

30000

35000

1960 1980 2000 2020

Year

F
os

si
l−

fu
el

 c
ar

bo
n

em
is

si
on

s
(m

ill
io

n
m

et
ric

 to
ns

)

plot_kaya(kd, "F", log_scale = TRUE, font_size = 12, trend_line = TRUE)

8

20000

30000

1960 1980 2000 2020

Year

F
os

si
l−

fu
el

 c
ar

bo
n

em
is

si
on

s
(m

ill
io

n
m

et
ric

 to
ns

)

plot_kaya(kd, "F", points = FALSE, start_year = NULL, font_size = 12)

15000

20000

25000

30000

35000

1960 1980 2000 2020

Year

F
os

si
l−

fu
el

 c
ar

bo
n

em
is

si
on

s
(m

ill
io

n
m

et
ric

 to
ns

)

• plot_fuel_mix(fuel_mix, collapse_renewables): Make a “donut” chart showing the amount of energy
the country got from different energy sources.

– Arguments:

9

* fuel_mix: A data frame with the fuel mix for the country, like the ones returned by get_fuel_mix()

* collapse_renewables (optional): Set this to TRUE or FALSE to specify whether to combine “Hydro”
with other renewables to make one “Renewables” category (TRUE), or plot “Hydro” separately from
the other renewables (FALSE).
If you don’t specify collapse_renewables, the default is to set collapse_renewables
= TRUE. Setting collapse_renewables = FALSE will only work if you also specified
collapse_renewables = FALSE when you retrieved the fuel mix using get_fuel_mix().

* Results: A plot object with a donut chart.

* Example:

fm = get_fuel_mix("World")
plot_fuel_mix(fm)

Fuel
Coal: 143.52 quads (27.2%)
Oil: 164.67 quads (31.2%)
Natural Gas: 130.44 quads (24.7%)
Nuclear: 22.73 quads (4.3%)
Renewables: 66.23 quads (12.6%)

World

fm = get_fuel_mix("World", collapse_renewables = FALSE)
plot_fuel_mix(fm, collapse_renewables = FALSE)

Fuel
Coal: 143.52 quads (27.2%)
Oil: 164.67 quads (31.2%)
Natural Gas: 130.44 quads (24.7%)
Nuclear: 22.73 quads (4.3%)
Hydro: 36.17 quads (6.9%)
Renewables: 30.06 quads (5.7%)

World

• kaya_region_list(): Get a list of regions and countries for which you can get Kaya data.
• emissions_factors(): Get a data frame with columns for

– fuel: The energy source
– emission_factor: The emissions from that energy source, in million metric tons of CO2 per quad of

energy.

• generation_capacity(): Get a data frame with generation capacity of a typical power plant for different
kinds of energy sources. This data frame has columns:

– fuel: The energy source.

– description: A description of the kind of power plant.

– nameplate_capacity: The “nameplate capacity” of a typical power plant of that type. The nameplate
capacity is the power output when the plant is running at its maximum capacity.

10

– capacity_factor: The capacity factor. This is the fraction of the nameplate capacity that the power
plant can produce over an average year.
The average power output from a power plant is the nameplate capacity times the capacity factor:

average power = nameplate capacity× capacity factor

11

	Some New Tools for Working with Data
	Getting fancy with the pipe operator (%>%)
	Extracting columns from a data frame in a pipeline
	Tidying up results of statistical modeling

	Writing functions
	kayadata: an R package for analyzing Kaya-identity data

