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Introduction

This exercise uses measurements of carbon dioxide from the laboratory on Mauna Loa, Hawaii, that was started by C.
David Keeling in 1958.

Downloading CO2 Data from Mauna Loa Observatory

We start by downloading the data from https://scrippsco2.ucsd.edu/assets/data/atmospheric/stations/in_situ_co2/
monthly/monthly_in_situ_co2_mlo.csv. The code here checks to see if the file already exists, so we don’t download
it again every time we build this report.

if (!file.exists('_data/mlo_data.csv')) {
download.file(mlo_url, '_data/mlo_data.csv')

}

After downloading the data, we process it, following the worked example in the instructions:

mlo_data = read_csv('_data/mlo_data.csv',
skip = 57, # skip the first 57 rows
col_names = c('year', 'month', 'date.excel', 'date',

'co2_raw', 'co2_raw_seas',
'co2_fit', 'co2_fit_seas',
'co2_filled', 'co2_filled_seas'),
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col_types = 'iiiddddddd',
# ˆˆˆ the first three columns are integers and the next
# 7 are real numbers
na = '-99.99'
# ˆˆˆ interpret -99.99 as a missing value

) %>% clean_names()

mlo_simple = mlo_data %>% select(year, month, date, co2 = co2_filled)

mlo_data_adjusted = mlo_simple %>%
mutate(co2_annual = slide_vec(co2, mean, .before = 5, .after = 6))

library(broom)
co2_fit = lm(co2 ~ date, data = mlo_simple)
co2_trend = coef(co2_fit)['date']

Exercises for Part 1

Exercises with CO2 Data from the Mauna Loa Observatory

Using the select function, make a new data tibble called mlo_seas, from the original mlo_data, which only has
two columns: date and co2_seas, where co2_seas is a renamed version of co2_filled_seas from the original
tibble.

mlo_seas = mlo_data %>% select(date, co2_seas = co2_filled_seas)

Now plot this with co2_seas on the y axis and date on the x axis, and a linear fit:

mlo_seas %>% ggplot(aes(x = date, y = co2_seas)) +
geom_line(size = 1) +
geom_smooth(method = "lm") +
labs(x = "Year", y = "CO2 (seasonally adjusted)")
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Now fit a linear function to find the annual trend of co2_seas. Save the results of your fit in a variable called
fit_seas, and extract the trend in CO2 concentration to a variable called trend_seas.

fit_seas = lm(co2_seas ~ date, data = mlo_seas)
trend_seas = coef(fit_seas)['date']

Compare the trend you fit to the seasonally adjusted data to the trend of the raw co2_filled data, from the workecd
exampled. You can get the trend for the worked example from the variable co2_fit, which was defined above, in the
code chunk calc_mlo_trend.

Answer: The trend in the seasonally adjusted data (trend_seas) is 1.60 ppm CO2 per year, which is very close to
the trend we fit to the raw data (co2_trend = 1.60).

Exercises with Global Temperature Data from NASA

We can also download a data set from NASA’s Goddard Institute for Space Studies (GISS), which contains the average
global temperature from 1880 through the present.

The URL for the data file is stored in the variable giss_url so you don’t have to type it in here.

Download this file and save it in the directory _data/global_temp_land_sea.csv. You may want to use if (!
file.exists(...)), as in the example above of downloading the CO2 data, to avoid downloading the file again if it
already exists in your _data directory.

if (!file.exists('_data/global_temp_land_sea.csv')) {
download.file(giss_url, '_data/global_temp_land_sea.csv')

}

Now read the file into R, using the read_csv function, and assign the resulting tibble to a variable giss_temp
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giss_temp = read_csv("_data/global_temp_land_sea.csv", skip = 1,
col_names = TRUE, na = '***')

The code below shows the first 5 lines of the resulting tibble, so you can see what it looks like:

head(giss_temp, 5)

## # A tibble: 5 x 19
## Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec `J-D` `D-N` DJF MAM JJA SON
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1880 -0.17 -0.24 -0.08 -0.15 -0.09 -0.2 -0.17 -0.09 -0.14 -0.23 -0.21 -0.17 -0.16 NA NA -0.11 -0.16 -0.19
## 2 1881 -0.19 -0.13 0.04 0.06 0.07 -0.18 0.01 -0.03 -0.15 -0.21 -0.18 -0.06 -0.08 -0.09 -0.16 0.06 -0.07 -0.18
## 3 1882 0.17 0.14 0.05 -0.15 -0.13 -0.22 -0.16 -0.07 -0.15 -0.23 -0.16 -0.36 -0.11 -0.08 0.08 -0.08 -0.15 -0.18
## 4 1883 -0.29 -0.36 -0.12 -0.18 -0.17 -0.06 -0.07 -0.13 -0.22 -0.11 -0.24 -0.11 -0.17 -0.19 -0.34 -0.16 -0.09 -0.19
## 5 1884 -0.13 -0.08 -0.36 -0.4 -0.33 -0.34 -0.32 -0.27 -0.27 -0.25 -0.33 -0.3 -0.28 -0.26 -0.1 -0.36 -0.31 -0.28

Let’s focus on the months only. Use select to select just the columns for “Year” and January through December (if
you are selecting a consecutive range of columns between “Foo” and “Bar” in the tibble df, you can call select(df,
Foo:Bar) or df %>% select(Foo:Bar)). Save the result in a variable called giss_monthly

giss_monthly = giss_temp %>% select(Year:Dec)

Use pivot_longer to organize the data to have three columns: one for the year, one for the name of the month, and
one for the temperature anomaly in that month. Store the result in a new variable called giss_g

giss_g = pivot_longer(giss_monthly, cols = -Year, names_to = "month",
values_to = "anomaly")

The following command will convert the month column in giss_g into an ordered factor that uses the integer values
1, 2, . . . , 12 to stand for “Jan”, “Feb”, . . . , “Dec”, and then uses those integer values to create a new column, date
that holds the fractional year, just as the date column in mlo_data did:

giss_g = giss_g %>%
mutate(month = factor(month, levels = month.abb, ordered = TRUE),

date = Year + (as.integer(month) - 0.5) / 12) %>%
arrange(date)`

Then we create a new column called date to get the fractional year corresponding to that month. We have to explicitly
convert the ordered factor into a number using the function as.integer(), and we subtract 0.5 because the time that
corresponds to the average temperature for the month is the middle of the month.

Below, use code similar to what I put above to add a new date column to giss_g.

giss_g = giss_g %>%
mutate(month = factor(month, levels = month.abb, ordered = TRUE),

date = Year + (as.integer(month) - 0.5) / 12) %>%
arrange(date)

Now plot the monthly temperature anomalies versus date:
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ggplot(giss_g, aes(x = date, y = anomaly) ) +
geom_line(size = 1) +
labs(x = "Year", y = "Temperature anomaly (C)")
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Make a new plot in which you plot a thin blue line for the monthly anomaly (use geom_line(aes(y = anomaly),
color = "blue", alpha = 0.3, size = 0.1); alpha is an optional specification for transparency where 0
means invisible (completely transparent) and 1 means opaque), a medium dark green line for the one-year sliding
average, and a thick dark blue line for the ten-year sliding average.

giss_g %>%
mutate(smooth_1 = slide_vec(anomaly, mean, .before = 5, .after = 6),

smooth_10 = slide_vec(anomaly, mean, .before = 59, .after = 60)) %>%
ggplot(aes(x = date)) +
geom_line(aes(y = anomaly), alpha = 0.3, size = 0.1, color = "blue") +
geom_line(aes(y = smooth_1), alpha = 0.6, size = 0.6, color = 'darkgreen') +
geom_line(aes(y = smooth_10), alpha = 1, size = 1, color = "darkblue") +
labs(x = "Year", y = "Temperature anomaly (C)")

5



−0.5

0.0

0.5

1.0

1880 1920 1960 2000
Year

Te
m

pe
ra

tu
re

 a
no

m
al

y 
(C

)

The graph shows that temperature didn’t show a steady trend until starting around 1970, so we want to isolate the data
starting in 1970 and fit a linear trend to it.

Below, create a new variable giss_recent and assign it a subset of giss_g that has all the data from January 1970
through the present. Fit a linear trend to the monthly anomaly and report it.

What is the average change in temperature from one year to the next?

giss_recent = giss_g %>% filter(Year >= 1970)
temp_fit = lm(anomaly ~ date, data = giss_recent)
temp_trend = coef(temp_fit)["date"]

Answer: On average, the temperature rose by 0.019 degree Celsius per year.

Did Global Warming Stop after 1998?

It is a common skeptic talking point that global warming stopped in 1998. In years with strong El Niños, global
temperatures tend to be higher and in years with strong La Niñas, global temperatures tend to be lower. We will
discuss why later in the semester.

The year 1998 had a particularly strong El Niño, and the year set a record for global temperature that was not exceeded
for several years. Indeed, compared to 1998, it might look as though global warming paused for many years.

We will examine whether this apparent pause has scientific validity.

To begin with, we will take the monthly GISS temperature data and convert it to annual average temperatures, so we
can deal with discrete years, rather than separate temperatures for each month.

We do this with the group_by and summarize functions (see the examples and explanation in the worked examples
document).
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We also want to select only recent data, so we arbitrarily say we will look at temperatures starting in 1979, which gives
us 19 years before the 1998 El Ni~o.

If we go back to the original giss_g data tibble, run the following code:

giss_annual = giss_g %>%
filter(Year >= 1979) %>%
group_by(Year) %>%
summarize(anomaly = mean(anomaly)) %>%
ungroup() %>%
mutate(date = Year + 0.5, before = Year < 1998)

Now plot the data and color the points for 1998 and afterward dark red to help us compare before and after 1998.

ggplot(giss_annual, aes(x = date, y = anomaly)) +
geom_line(size = 1) +
geom_point(aes(color = before), size = 3) +
scale_color_manual(values = c("TRUE" = "darkblue", "FALSE" = "darkred"),

guide = "none") +
# ˆˆˆ color "before" points dark blue, "after" points dark red.
# guide = "none" tells ggplot not to show a legend explaining the colors.
labs(x = "Year", y = "Temperature Anomaly")
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Does it look as though the red points are not rising as fast as the blue points?

Let’s just plot the data from the years 1998–2011. Use the filter function to select just the date from the years
1998–2011 and pass that to ggplot.
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giss_annual %>% filter(Year >= 1998, Year <= 2011) %>%
ggplot(aes(x = date, y = anomaly)) +
geom_line(size = 1) +
geom_point(aes(color = before), size = 3) +
scale_color_manual(values = c("TRUE" = "darkblue", "FALSE" = "darkred"),

guide = "none") +
# ˆˆˆ color "before" points dark blue, "after" points dark red.
# guide = "none" tells ggplot not to show a legend explaining the colors.
labs(x = "Year", y = "Temperature Anomaly")
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Now how does it look?

Let’s use the filter function to break the data into two different data sets, which we will store in tibbles called
giss_before and giss_after: giss_before will have the data from 1979–1998 and the other, giss_after will
have the data from 1998 onward (note that the year 1998 appears in both data sets).

Also, use the mutate function to add a column called timing to each of the split data sets and set the value of this
column to “Before” for giss_before and “After” for giss_after.

giss_before = giss_annual %>% filter(Year <= 1998) %>%
mutate(timing = "Before")

giss_after = giss_annual %>% filter(Year >= 1998) %>%
mutate(timing = "After")

Now use lm to find the trend in temperature data in giss_before (from 1979–1998) and assign it to a variable
giss_trend.
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fit_before = lm(anomaly ~ Year, data = giss_before)
fit_after = lm(anomaly ~ Year, data = giss_after)
trend_before = coef(fit_before)['Year']
trend_after = coef(fit_after)['Year']

Next, combine the two data frames (or tibbles) into one, using the bind_rows function. If you have created the data
frames giss_before and giss_after, then you can un-comment the code below to combine them.

giss_combined = bind_rows(giss_before, giss_after)

Now let’s use ggplot to plot giss_combined:

• Aesthetic mapping:

– Use the date column for the x variable.
– Use the anomaly column for the y variable.
– Use the timing column to set the color of plot elements

• Plot both lines and points.

– Set the size of the lines to 1
– Set the size of the points to 2

• Use the scale_color_manual function to set the color of “Before” to “darkblue” and “After” to “darkred”
• Use geom_smooth(data = giss_before, method="lm", color = "blue", fill = "blue",

alpha = 0.2, fullrange = TRUE) to show a linear trend that is fit just to the giss_before data.

ggplot(giss_combined, aes(x = date, y = anomaly, color = timing)) +
geom_line(size = 1) +
geom_point(size = 2) +
geom_smooth(data = giss_before, method = "lm", color = "blue",

fill = "blue", alpha = 0.2, fullrange = TRUE) +
scale_color_manual(values = c(Before = "darkblue", After = "darkred")) +
labs(x = "Year", y = "Temperature anomaly")
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If the temperature trend changed after 1998 (e.g., if the warming paused, or if it reversed and started cooling) then we
would expect the temperature measurements after 1998 to fall predominantly below the extrapolated trend line, and
our confidence that the trend had changed would depend on the number of points that fall below the shaded uncertainty
range.

How many of the red points fall below the trend line?

Answer: Out of 24 red points (the years 1998–2021), four fall below the trend line

How many of the red points fall above the trend line?

Answer: 20 of the 24 red points fall above the trend line.

If we just look at the years 1998–2012, how many of the red points fall above vs. below the trend line?

Answer: In the 15 years from 1998–2012, 4 points fall below the trend line and 11 fall above it.

What do you conclude about whether global warming paused or stopped for several years after 1998?

Answer: Even if we just look at the years 1998–2012, it is clear that most years were warmer than we would have
expected if the warming had followed its historical trend from 1979–1998. This means that if anything, the earth was
warming faster than before—the opposite of pausing or stopping. After 2012, all of the points are above the trend line.
Most of them are far above it. So there is no reasonable way to look at this data and conclude that it stopped warming,
or even paused temporarily, after 1998.

Exercises for Part 2

• All students do Chapter 3, exercises 2–3.
• Graduate students should also do Chapter 3, exercise 1.
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For the exercises, use the following numbers:

• Isolar = 1350 W/m2

• σ = 5.67×10−8

• α = 0.30
• ε = 1.0

I_solar = 1350
sigma = 5.67E-8
alpha = 0.30
epsilon = 1.0

Exercise 3.1 (Grad. students only)

The moon with no heat transport. The Layer Model assumes that the temperature of the body in space
is all the same. This is not really very accurate, as you know that it is colder at the poles than it is at the
equator. For a bare rock with no atmosphere or ocean, like the moon, the situation is even worse because
fluids like air and water are how heat is carried around on the planet. So let us make the other extreme
assumption, that there is no heat transport on a bare rock like the moon. Assume for comparability that
the albedo of this world is 0.30, same as Earth’s.

What is the equilibrium temperature of the surface of the moon, on the equator, at local noon, when the
sun is directly overhead? (Hint: First figure out the intensity of the local solar radiation Isolar)

At the equator of the moon at noon, the intensity is just (1−αmoonIsolar. The factor of 1/4 that we use for the earth’s
average temperature is to account for the fact that we’re averaging the intensity over the whole planet, including the
polar regions and the night-time side. But for the equator at noon, we are only looking at the place where the sun is
directly overhead, so we don’t need a geometrical factor.

albedo_moon = 0.3
epsilon_moon = 1
I_moon = I_solar * (1 - albedo_moon)
T_moon = (I_moon / (epsilon_moon * sigma))ˆ0.25

Answer: The temperature of the equator of the moon at noon is 359.3 K.

What is the equilibrium temperature on the dark side of the moon?

Answer: The intensity of sunlight on the dark side of the moon is zero, so the temperature would be zero Kelvin.

Exercise 3.2

A Two-Layer Model. Insert another atmospheric layer into the model, just like the first one. The layer is
transparent to visible light but a blackbody for infrared.

make_layer_diagram(2)

a) Write the energy budgets for both atmospheric layers, for the ground, and for the Earth as a whole,
like we did for the One-Layer Model.
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Earth

Atmospheric Layer 1

Atmospheric Layer 2

I2,up

Iground,up

I1,up

I1,down

I2,down

Visible Boundary to space

Figure 1: An energy diagram for a planet with two panes of glass for an atmosphere. The intensity of absorbed visible
light is (1−α)Isolar/4.
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Answer:

At each layer, calculate the heat in (in the diagram, this is the sum of all the intensities with arrows that end at the
atmospheric layer) and the heat out (the sum of all the intensities that start at the atmospheric layer and have arrows
pointing away from it).

• Top of the atmosphere: I2,up = Ivisible = (1−α)Isolar/4
• Layer 2: I1,up = I2,up + I2,down
• Layer 1: Iground,up + I2,down = I1,up + I1,down
• Ground: Iground,up = Ivisible + I1,down

b) Manipulate the budget for the Earth as a whole to obtain the temperature T2 of the top atmospheric
layer, labeled Atmospheric Layer 2 in the figure above. Does this part of the exercise seem familiar
in any way? Does the term ring any bells?

Top of the atmosphere:

I2,up = Ivisible = (1−α)Isolar/4

I2,up = εσT 4
2

T2 =
4

√
(I2,up

εσ

=
4

√
(1−α)Isolar

4εσ

This is the same as the bare-rock temperature.

I_visible = (1 - alpha) * I_solar / 4
I_2_up = I_visible
T_2 = (I_2_up / (epsilon * sigma))ˆ0.25

Answer: The temperature of layer 2 is 254.1 K, which is the same as the bare-rock temperature. In layer models, the
top layer of the atmosphere is always the bare-rock temperature.

c) Insert the value you found for T2 into the energy budget for layer 2, and solve for the temperature of
layer 1 in terms of layer 2. How much bigger is T1 than T2?

From the energy budget for Layer 2, I1,up = I2,up + I2,down. The temperature of the bottom of the layer is the same as
the temperature for the top of the layer, so I2,down = I2,up

I_1_up = 2 * I_2_up
T_1 = (I_1_up / (epsilon * sigma))ˆ0.25

You could also let R do more of the work for you by writing

I_2_down = I_2_up
I_1_up = I_2_up + I_2_down
T_1 = (I_1_up / (epsilon * sigma))ˆ0.25

Answer: The temperature of layer 1 is 302.1 K. This is the same as the ground temperature in a 1-layer model.
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d) Now insert the value you found for T1 into the budget for atmospheric layer 1 to obtain the tem-
perature of the ground, Tground. Is the greenhouse effect stronger or weaker because of the second
layer?

From the energy budget for layer 1,

• Iground,up + I2,down = I1,up + I1,down
• Iground,up = I1,up + I1,down - I2,down
• I1,down = I1,up and I2,down = I2,up
• so Iground,up = 2 * I1,up - I2,up

I_ground_up = 2 * I_1_up - I_2_up
T_ground = (I_ground_up / (epsilon * sigma))ˆ0.25

Again, you could let R do more of the work for you by writing

I_1_down = I_1_up
I_ground_up = I_1_down + I_1_up - I_2_down
T_ground = (I_ground_up / (epsilon * sigma))ˆ0.25

Answer: Tground = 334.4 K.

We can also use algebra to observe that

Iground,up = 2∗ I1,up − I2,up

I2,up = 2I2,up

so

Iground,up = 4I2,up − I2,up

= 3I2,up

Tground =
4

√
3I2,up

εσ

=
4√3Tbare rock.

In a 1-layer model, the ground temperature was 20.25 times the bare-rock temperature, and in a 2-layer model, the
bround temperature is 30.25 times the bare-rock temperature.

Exercise 3.3

make_nuclear_winter_diagram()

Nuclear Winter. Let us go back to the One-Layer Model but change it so that the atmospheric layer
absorbs visible light rather than allowing it to pass through (See the figure above). This could happen if
the upper atmosphere were filled with dust. For simplicity, assume that the albedo of the Earth remains the
same, even though in the real world it might change with a dusty atmosphere.> What is the temperature
of the ground in this case?
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Earth

Dusty atmosphere

I1,up

Iground,up I1,down

Visible
Boundary to space

Figure 2: An energy diagram for a planet with an opaque pane of glass for an atmosphere. The intensity of absorbed
visible light is (1−α)Isolar/4.
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Answer: Here, the key difference is that the heat from the sun is absorbed by the atmosphere instead of passing
through the atmosphere to the ground.

The equation for the atmosphere is the same as in the 1-layer model because we use the energy balance at the boundary
to space: Iatm, up = Ivisible = (1−α)Isolar/4 and the temperature of the atmosphere is the bare-rock temperature, just as
the top layer of the atmosphere is for every layer model.

However, things are different at the ground. The energy balance at the dusty atmosphere is

• Ivisible + Iground,up = Iatm,up + Iatm,down
• Iground,up = Iatm,up + Iatm,down - Ivisible
• But Iatm,up = Iatm,down = Ivisible
• So Iground,up = Iatm,up.
• This means that Tground = Tatmosphere = Tbare-rock.

I_visible = (1 - alpha) * I_solar / 4
I_atm_up = I_visible
I_atm_down = I_visible
I_ground_up = I_atm_up + I_atm_down - I_visible
T_ground = (I_ground_up / (epsilon * sigma))ˆ0.25

T_ground = 254.1 K. This is the same as the bare-rock temperature.

The effect of the dust in the atmosphere is to cancel out the greenhouse effect and cool off the surface to the bare-rock
temperature. The greenhouse effect works because the atmosphere is transparent to shortwave light and opaque to
longwave light. If the atmosphere becomes opaque to shortwave light, then the greenhouse effect doesn’t work.
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